Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x1) → x1
a(b(c(x1))) → c(c(b(b(a(x1)))))
b(x1) → a(x1)

Q is empty.


QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x1) → x1
a(b(c(x1))) → c(c(b(b(a(x1)))))
b(x1) → a(x1)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

A(b(c(x1))) → B(b(a(x1)))
A(b(c(x1))) → B(a(x1))
B(x1) → A(x1)
A(b(c(x1))) → A(x1)

The TRS R consists of the following rules:

a(x1) → x1
a(b(c(x1))) → c(c(b(b(a(x1)))))
b(x1) → a(x1)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ QDPToSRSProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A(b(c(x1))) → B(b(a(x1)))
A(b(c(x1))) → B(a(x1))
B(x1) → A(x1)
A(b(c(x1))) → A(x1)

The TRS R consists of the following rules:

a(x1) → x1
a(b(c(x1))) → c(c(b(b(a(x1)))))
b(x1) → a(x1)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The finiteness of this DP problem is implied by strong termination of a SRS due to [12].


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
QTRS
          ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x1) → x1
a(b(c(x1))) → c(c(b(b(a(x1)))))
b(x1) → a(x1)
A(b(c(x1))) → B(b(a(x1)))
A(b(c(x1))) → B(a(x1))
B(x1) → A(x1)
A(b(c(x1))) → A(x1)

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(x1) → x1
a(b(c(x1))) → c(c(b(b(a(x1)))))
b(x1) → a(x1)
A(b(c(x1))) → B(b(a(x1)))
A(b(c(x1))) → B(a(x1))
B(x1) → A(x1)
A(b(c(x1))) → A(x1)

The set Q is empty.
We have obtained the following QTRS:

a(x) → x
c(b(a(x))) → a(b(b(c(c(x)))))
b(x) → a(x)
c(b(A(x))) → a(b(B(x)))
c(b(A(x))) → a(B(x))
B(x) → A(x)
c(b(A(x))) → A(x)

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
QTRS
              ↳ DependencyPairsProof
              ↳ QTRS Reverse
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → x
c(b(a(x))) → a(b(b(c(c(x)))))
b(x) → a(x)
c(b(A(x))) → a(b(B(x)))
c(b(A(x))) → a(B(x))
B(x) → A(x)
c(b(A(x))) → A(x)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

C(b(A(x))) → B1(B(x))
C(b(a(x))) → B1(b(c(c(x))))
C(b(A(x))) → B2(x)
C(b(a(x))) → C(x)
C(b(A(x))) → A1(B(x))
C(b(a(x))) → B1(c(c(x)))
B1(x) → A1(x)
C(b(a(x))) → C(c(x))
C(b(A(x))) → A1(b(B(x)))
C(b(a(x))) → A1(b(b(c(c(x)))))

The TRS R consists of the following rules:

a(x) → x
c(b(a(x))) → a(b(b(c(c(x)))))
b(x) → a(x)
c(b(A(x))) → a(b(B(x)))
c(b(A(x))) → a(B(x))
B(x) → A(x)
c(b(A(x))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
QDP
                  ↳ DependencyGraphProof
              ↳ QTRS Reverse
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(b(A(x))) → B1(B(x))
C(b(a(x))) → B1(b(c(c(x))))
C(b(A(x))) → B2(x)
C(b(a(x))) → C(x)
C(b(A(x))) → A1(B(x))
C(b(a(x))) → B1(c(c(x)))
B1(x) → A1(x)
C(b(a(x))) → C(c(x))
C(b(A(x))) → A1(b(B(x)))
C(b(a(x))) → A1(b(b(c(c(x)))))

The TRS R consists of the following rules:

a(x) → x
c(b(a(x))) → a(b(b(c(c(x)))))
b(x) → a(x)
c(b(A(x))) → a(b(B(x)))
c(b(A(x))) → a(B(x))
B(x) → A(x)
c(b(A(x))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 8 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
QDP
                      ↳ Narrowing
              ↳ QTRS Reverse
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(b(a(x))) → C(x)
C(b(a(x))) → C(c(x))

The TRS R consists of the following rules:

a(x) → x
c(b(a(x))) → a(b(b(c(c(x)))))
b(x) → a(x)
c(b(A(x))) → a(b(B(x)))
c(b(A(x))) → a(B(x))
B(x) → A(x)
c(b(A(x))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(b(a(x))) → C(c(x)) at position [0] we obtained the following new rules:

C(b(a(b(A(x0))))) → C(A(x0))
C(b(a(b(A(x0))))) → C(a(b(B(x0))))
C(b(a(b(a(x0))))) → C(a(b(b(c(c(x0))))))
C(b(a(b(A(x0))))) → C(a(B(x0)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
QDP
                          ↳ DependencyGraphProof
              ↳ QTRS Reverse
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(b(a(b(A(x0))))) → C(a(B(x0)))
C(b(a(b(A(x0))))) → C(A(x0))
C(b(a(x))) → C(x)
C(b(a(b(A(x0))))) → C(a(b(B(x0))))
C(b(a(b(a(x0))))) → C(a(b(b(c(c(x0))))))

The TRS R consists of the following rules:

a(x) → x
c(b(a(x))) → a(b(b(c(c(x)))))
b(x) → a(x)
c(b(A(x))) → a(b(B(x)))
c(b(A(x))) → a(B(x))
B(x) → A(x)
c(b(A(x))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
QDP
                              ↳ Narrowing
              ↳ QTRS Reverse
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(b(a(b(A(x0))))) → C(a(B(x0)))
C(b(a(x))) → C(x)
C(b(a(b(A(x0))))) → C(a(b(B(x0))))
C(b(a(b(a(x0))))) → C(a(b(b(c(c(x0))))))

The TRS R consists of the following rules:

a(x) → x
c(b(a(x))) → a(b(b(c(c(x)))))
b(x) → a(x)
c(b(A(x))) → a(b(B(x)))
c(b(A(x))) → a(B(x))
B(x) → A(x)
c(b(A(x))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(b(a(b(A(x0))))) → C(a(b(B(x0)))) at position [0] we obtained the following new rules:

C(b(a(b(A(y0))))) → C(b(B(y0)))
C(b(a(b(A(x0))))) → C(a(b(A(x0))))
C(b(a(b(A(y0))))) → C(a(a(B(y0))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
QDP
                                  ↳ Narrowing
              ↳ QTRS Reverse
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(b(a(b(A(y0))))) → C(a(a(B(y0))))
C(b(a(b(A(x0))))) → C(a(B(x0)))
C(b(a(b(A(y0))))) → C(b(B(y0)))
C(b(a(x))) → C(x)
C(b(a(b(A(x0))))) → C(a(b(A(x0))))
C(b(a(b(a(x0))))) → C(a(b(b(c(c(x0))))))

The TRS R consists of the following rules:

a(x) → x
c(b(a(x))) → a(b(b(c(c(x)))))
b(x) → a(x)
c(b(A(x))) → a(b(B(x)))
c(b(A(x))) → a(B(x))
B(x) → A(x)
c(b(A(x))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(b(a(b(A(x0))))) → C(a(B(x0))) at position [0] we obtained the following new rules:

C(b(a(b(A(x0))))) → C(a(A(x0)))
C(b(a(b(A(y0))))) → C(B(y0))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
QDP
                                      ↳ Narrowing
              ↳ QTRS Reverse
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(b(a(b(A(x0))))) → C(a(A(x0)))
C(b(a(b(A(y0))))) → C(a(a(B(y0))))
C(b(a(x))) → C(x)
C(b(a(b(A(y0))))) → C(b(B(y0)))
C(b(a(b(A(x0))))) → C(a(b(A(x0))))
C(b(a(b(A(y0))))) → C(B(y0))
C(b(a(b(a(x0))))) → C(a(b(b(c(c(x0))))))

The TRS R consists of the following rules:

a(x) → x
c(b(a(x))) → a(b(b(c(c(x)))))
b(x) → a(x)
c(b(A(x))) → a(b(B(x)))
c(b(A(x))) → a(B(x))
B(x) → A(x)
c(b(A(x))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(b(a(b(A(y0))))) → C(b(B(y0))) at position [0] we obtained the following new rules:

C(b(a(b(A(x0))))) → C(b(A(x0)))
C(b(a(b(A(y0))))) → C(a(B(y0)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
QDP
                                          ↳ Narrowing
              ↳ QTRS Reverse
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(b(a(b(A(y0))))) → C(a(a(B(y0))))
C(b(a(b(A(x0))))) → C(a(A(x0)))
C(b(a(b(A(y0))))) → C(a(B(y0)))
C(b(a(x))) → C(x)
C(b(a(b(A(x0))))) → C(b(A(x0)))
C(b(a(b(A(x0))))) → C(a(b(A(x0))))
C(b(a(b(A(y0))))) → C(B(y0))
C(b(a(b(a(x0))))) → C(a(b(b(c(c(x0))))))

The TRS R consists of the following rules:

a(x) → x
c(b(a(x))) → a(b(b(c(c(x)))))
b(x) → a(x)
c(b(A(x))) → a(b(B(x)))
c(b(A(x))) → a(B(x))
B(x) → A(x)
c(b(A(x))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(b(a(b(A(x0))))) → C(a(b(A(x0)))) at position [0] we obtained the following new rules:

C(b(a(b(A(y0))))) → C(a(a(A(y0))))
C(b(a(b(A(y0))))) → C(b(A(y0)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
QDP
                                              ↳ Narrowing
              ↳ QTRS Reverse
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(b(a(b(A(x0))))) → C(a(A(x0)))
C(b(a(b(A(y0))))) → C(a(a(B(y0))))
C(b(a(b(A(y0))))) → C(a(B(y0)))
C(b(a(x))) → C(x)
C(b(a(b(A(y0))))) → C(a(a(A(y0))))
C(b(a(b(A(x0))))) → C(b(A(x0)))
C(b(a(b(A(y0))))) → C(B(y0))
C(b(a(b(a(x0))))) → C(a(b(b(c(c(x0))))))

The TRS R consists of the following rules:

a(x) → x
c(b(a(x))) → a(b(b(c(c(x)))))
b(x) → a(x)
c(b(A(x))) → a(b(B(x)))
c(b(A(x))) → a(B(x))
B(x) → A(x)
c(b(A(x))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(b(a(b(A(y0))))) → C(a(a(B(y0)))) at position [0] we obtained the following new rules:

C(b(a(b(A(x0))))) → C(a(a(A(x0))))
C(b(a(b(A(y0))))) → C(a(B(y0)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
QDP
                                                  ↳ Narrowing
              ↳ QTRS Reverse
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(b(a(b(A(x0))))) → C(a(A(x0)))
C(b(a(b(A(y0))))) → C(a(B(y0)))
C(b(a(x))) → C(x)
C(b(a(b(A(x0))))) → C(b(A(x0)))
C(b(a(b(A(y0))))) → C(a(a(A(y0))))
C(b(a(b(A(y0))))) → C(B(y0))
C(b(a(b(a(x0))))) → C(a(b(b(c(c(x0))))))

The TRS R consists of the following rules:

a(x) → x
c(b(a(x))) → a(b(b(c(c(x)))))
b(x) → a(x)
c(b(A(x))) → a(b(B(x)))
c(b(A(x))) → a(B(x))
B(x) → A(x)
c(b(A(x))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(b(a(b(A(x0))))) → C(a(A(x0))) at position [0] we obtained the following new rules:

C(b(a(b(A(y0))))) → C(A(y0))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
QDP
                                                      ↳ DependencyGraphProof
              ↳ QTRS Reverse
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(b(a(b(A(y0))))) → C(a(B(y0)))
C(b(a(b(A(y0))))) → C(A(y0))
C(b(a(x))) → C(x)
C(b(a(b(A(y0))))) → C(a(a(A(y0))))
C(b(a(b(A(x0))))) → C(b(A(x0)))
C(b(a(b(A(y0))))) → C(B(y0))
C(b(a(b(a(x0))))) → C(a(b(b(c(c(x0))))))

The TRS R consists of the following rules:

a(x) → x
c(b(a(x))) → a(b(b(c(c(x)))))
b(x) → a(x)
c(b(A(x))) → a(b(B(x)))
c(b(A(x))) → a(B(x))
B(x) → A(x)
c(b(A(x))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
QDP
                                                          ↳ Narrowing
              ↳ QTRS Reverse
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(b(a(b(A(y0))))) → C(a(B(y0)))
C(b(a(x))) → C(x)
C(b(a(b(A(y0))))) → C(a(a(A(y0))))
C(b(a(b(A(x0))))) → C(b(A(x0)))
C(b(a(b(A(y0))))) → C(B(y0))
C(b(a(b(a(x0))))) → C(a(b(b(c(c(x0))))))

The TRS R consists of the following rules:

a(x) → x
c(b(a(x))) → a(b(b(c(c(x)))))
b(x) → a(x)
c(b(A(x))) → a(b(B(x)))
c(b(A(x))) → a(B(x))
B(x) → A(x)
c(b(A(x))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(b(a(b(A(y0))))) → C(B(y0)) at position [0] we obtained the following new rules:

C(b(a(b(A(x0))))) → C(A(x0))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
QDP
                                                              ↳ DependencyGraphProof
              ↳ QTRS Reverse
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(b(a(b(A(y0))))) → C(a(B(y0)))
C(b(a(b(A(x0))))) → C(A(x0))
C(b(a(x))) → C(x)
C(b(a(b(A(x0))))) → C(b(A(x0)))
C(b(a(b(A(y0))))) → C(a(a(A(y0))))
C(b(a(b(a(x0))))) → C(a(b(b(c(c(x0))))))

The TRS R consists of the following rules:

a(x) → x
c(b(a(x))) → a(b(b(c(c(x)))))
b(x) → a(x)
c(b(A(x))) → a(b(B(x)))
c(b(A(x))) → a(B(x))
B(x) → A(x)
c(b(A(x))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
QDP
                                                                  ↳ Narrowing
              ↳ QTRS Reverse
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(b(a(b(A(y0))))) → C(a(B(y0)))
C(b(a(x))) → C(x)
C(b(a(b(A(y0))))) → C(a(a(A(y0))))
C(b(a(b(A(x0))))) → C(b(A(x0)))
C(b(a(b(a(x0))))) → C(a(b(b(c(c(x0))))))

The TRS R consists of the following rules:

a(x) → x
c(b(a(x))) → a(b(b(c(c(x)))))
b(x) → a(x)
c(b(A(x))) → a(b(B(x)))
c(b(A(x))) → a(B(x))
B(x) → A(x)
c(b(A(x))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(b(a(b(A(x0))))) → C(b(A(x0))) at position [0] we obtained the following new rules:

C(b(a(b(A(y0))))) → C(a(A(y0)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
QDP
                                                                      ↳ Narrowing
              ↳ QTRS Reverse
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(b(a(b(A(y0))))) → C(a(A(y0)))
C(b(a(b(A(y0))))) → C(a(B(y0)))
C(b(a(x))) → C(x)
C(b(a(b(A(y0))))) → C(a(a(A(y0))))
C(b(a(b(a(x0))))) → C(a(b(b(c(c(x0))))))

The TRS R consists of the following rules:

a(x) → x
c(b(a(x))) → a(b(b(c(c(x)))))
b(x) → a(x)
c(b(A(x))) → a(b(B(x)))
c(b(A(x))) → a(B(x))
B(x) → A(x)
c(b(A(x))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(b(a(b(A(y0))))) → C(a(B(y0))) at position [0] we obtained the following new rules:

C(b(a(b(A(x0))))) → C(a(A(x0)))
C(b(a(b(A(y0))))) → C(B(y0))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ Narrowing
QDP
                                                                          ↳ Narrowing
              ↳ QTRS Reverse
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(b(a(b(A(y0))))) → C(a(A(y0)))
C(b(a(x))) → C(x)
C(b(a(b(A(y0))))) → C(a(a(A(y0))))
C(b(a(b(A(y0))))) → C(B(y0))
C(b(a(b(a(x0))))) → C(a(b(b(c(c(x0))))))

The TRS R consists of the following rules:

a(x) → x
c(b(a(x))) → a(b(b(c(c(x)))))
b(x) → a(x)
c(b(A(x))) → a(b(B(x)))
c(b(A(x))) → a(B(x))
B(x) → A(x)
c(b(A(x))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(b(a(b(A(y0))))) → C(a(a(A(y0)))) at position [0] we obtained the following new rules:

C(b(a(b(A(y0))))) → C(a(A(y0)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ Narrowing
QDP
                                                                              ↳ Narrowing
              ↳ QTRS Reverse
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(b(a(b(A(y0))))) → C(a(A(y0)))
C(b(a(x))) → C(x)
C(b(a(b(A(y0))))) → C(B(y0))
C(b(a(b(a(x0))))) → C(a(b(b(c(c(x0))))))

The TRS R consists of the following rules:

a(x) → x
c(b(a(x))) → a(b(b(c(c(x)))))
b(x) → a(x)
c(b(A(x))) → a(b(B(x)))
c(b(A(x))) → a(B(x))
B(x) → A(x)
c(b(A(x))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(b(a(b(A(y0))))) → C(a(A(y0))) at position [0] we obtained the following new rules:

C(b(a(b(A(y0))))) → C(A(y0))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ Narrowing
                                                                            ↳ QDP
                                                                              ↳ Narrowing
QDP
                                                                                  ↳ DependencyGraphProof
              ↳ QTRS Reverse
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(b(a(b(A(y0))))) → C(A(y0))
C(b(a(x))) → C(x)
C(b(a(b(A(y0))))) → C(B(y0))
C(b(a(b(a(x0))))) → C(a(b(b(c(c(x0))))))

The TRS R consists of the following rules:

a(x) → x
c(b(a(x))) → a(b(b(c(c(x)))))
b(x) → a(x)
c(b(A(x))) → a(b(B(x)))
c(b(A(x))) → a(B(x))
B(x) → A(x)
c(b(A(x))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ Narrowing
                                                                            ↳ QDP
                                                                              ↳ Narrowing
                                                                                ↳ QDP
                                                                                  ↳ DependencyGraphProof
QDP
                                                                                      ↳ Narrowing
              ↳ QTRS Reverse
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(b(a(x))) → C(x)
C(b(a(b(A(y0))))) → C(B(y0))
C(b(a(b(a(x0))))) → C(a(b(b(c(c(x0))))))

The TRS R consists of the following rules:

a(x) → x
c(b(a(x))) → a(b(b(c(c(x)))))
b(x) → a(x)
c(b(A(x))) → a(b(B(x)))
c(b(A(x))) → a(B(x))
B(x) → A(x)
c(b(A(x))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule C(b(a(b(A(y0))))) → C(B(y0)) at position [0] we obtained the following new rules:

C(b(a(b(A(x0))))) → C(A(x0))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ Narrowing
                                                                            ↳ QDP
                                                                              ↳ Narrowing
                                                                                ↳ QDP
                                                                                  ↳ DependencyGraphProof
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
QDP
                                                                                          ↳ DependencyGraphProof
              ↳ QTRS Reverse
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(b(a(b(A(x0))))) → C(A(x0))
C(b(a(x))) → C(x)
C(b(a(b(a(x0))))) → C(a(b(b(c(c(x0))))))

The TRS R consists of the following rules:

a(x) → x
c(b(a(x))) → a(b(b(c(c(x)))))
b(x) → a(x)
c(b(A(x))) → a(b(B(x)))
c(b(A(x))) → a(B(x))
B(x) → A(x)
c(b(A(x))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ Narrowing
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
                                                                ↳ QDP
                                                                  ↳ Narrowing
                                                                    ↳ QDP
                                                                      ↳ Narrowing
                                                                        ↳ QDP
                                                                          ↳ Narrowing
                                                                            ↳ QDP
                                                                              ↳ Narrowing
                                                                                ↳ QDP
                                                                                  ↳ DependencyGraphProof
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
QDP
              ↳ QTRS Reverse
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(b(a(x))) → C(x)
C(b(a(b(a(x0))))) → C(a(b(b(c(c(x0))))))

The TRS R consists of the following rules:

a(x) → x
c(b(a(x))) → a(b(b(c(c(x)))))
b(x) → a(x)
c(b(A(x))) → a(b(B(x)))
c(b(A(x))) → a(B(x))
B(x) → A(x)
c(b(A(x))) → A(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We have reversed the following QTRS:
The set of rules R is

a(x) → x
c(b(a(x))) → a(b(b(c(c(x)))))
b(x) → a(x)
c(b(A(x))) → a(b(B(x)))
c(b(A(x))) → a(B(x))
B(x) → A(x)
c(b(A(x))) → A(x)

The set Q is empty.
We have obtained the following QTRS:

a(x) → x
a(b(c(x))) → c(c(b(b(a(x)))))
b(x) → a(x)
A(b(c(x))) → B(b(a(x)))
A(b(c(x))) → B(a(x))
B(x) → A(x)
A(b(c(x))) → A(x)

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
              ↳ QTRS Reverse
QTRS
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → x
a(b(c(x))) → c(c(b(b(a(x)))))
b(x) → a(x)
A(b(c(x))) → B(b(a(x)))
A(b(c(x))) → B(a(x))
B(x) → A(x)
A(b(c(x))) → A(x)

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(x) → x
c(b(a(x))) → a(b(b(c(c(x)))))
b(x) → a(x)
c(b(A(x))) → a(b(B(x)))
c(b(A(x))) → a(B(x))
B(x) → A(x)
c(b(A(x))) → A(x)

The set Q is empty.
We have obtained the following QTRS:

a(x) → x
a(b(c(x))) → c(c(b(b(a(x)))))
b(x) → a(x)
A(b(c(x))) → B(b(a(x)))
A(b(c(x))) → B(a(x))
B(x) → A(x)
A(b(c(x))) → A(x)

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPToSRSProof
        ↳ QTRS
          ↳ QTRS Reverse
            ↳ QTRS
              ↳ DependencyPairsProof
              ↳ QTRS Reverse
              ↳ QTRS Reverse
QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → x
a(b(c(x))) → c(c(b(b(a(x)))))
b(x) → a(x)
A(b(c(x))) → B(b(a(x)))
A(b(c(x))) → B(a(x))
B(x) → A(x)
A(b(c(x))) → A(x)

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(x1) → x1
a(b(c(x1))) → c(c(b(b(a(x1)))))
b(x1) → a(x1)

The set Q is empty.
We have obtained the following QTRS:

a(x) → x
c(b(a(x))) → a(b(b(c(c(x)))))
b(x) → a(x)

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
QTRS
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → x
c(b(a(x))) → a(b(b(c(c(x)))))
b(x) → a(x)

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(x1) → x1
a(b(c(x1))) → c(c(b(b(a(x1)))))
b(x1) → a(x1)

The set Q is empty.
We have obtained the following QTRS:

a(x) → x
c(b(a(x))) → a(b(b(c(c(x)))))
b(x) → a(x)

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse
QTRS

Q restricted rewrite system:
The TRS R consists of the following rules:

a(x) → x
c(b(a(x))) → a(b(b(c(c(x)))))
b(x) → a(x)

Q is empty.